
Lecture 37

Finite Difference Method, Yee
Algorithm

In this lecture, we are going to introduce one of the simplest methods to solve Maxwell’s equa-
tions numerically. This is the finite-difference time-domain method. Because of its simplicity,
and that a simple Maxwell solver can be coded in one afternoon, almost every physics or elec-
trical engineering laboratory has a home-grown version of the finite-difference time-domain
solver. This method is the epitome of theat “simplicity rules.”1 Professor Hermann Haus
at MIT used to say: find the simplest method to do things. Complicated methods will be
forgotten, but the simplest method will prevail. This is also reminiscent of Einstein’s saying,
“Everything should be made as simple as possible, but no simpler!”

37.1 Finite-Difference Time-Domain Method

To obtain the transient (time-domain) solution of the wave equation for a more general,
inhomogeneous medium, a numerical method has to be used. The finite-difference time-
domain (FDTD) method, a numerical method, is particularly suitable for solving transient
problems. Moreover, it is quite versatile, and given the present computer technology, it has
been used with great success in solving many practical problems. This method is based on a
simple Yee algorithm [224] and has been vastly popularized by Taflove [225,226].

In the finite-difference method, continuous space-time is replaced with a discrete space-
time. Then, in the discrete space-time, partial differential equations are replaced with finite
difference equations. These finite difference equations are readily implemented on a digital
computer. Furthermore, an iterative or time-stepping scheme can be implemented without
having to solve large matrices, resulting in a great savings in computer time. Moreover, the
matrix for the system of equations is never generated making this a matrix-free method.
There is no need for matrix management as one writes this numerical solver. More recently,

1“rule” is used as a verb.
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372 Electromagnetic Field Theory

the development of parallel processor architectures in computers has also further enhanced
the efficiency of the finite-difference scheme [227].

The finite-difference method is also described in numerous works (see, for example, Potter
1973 [228]; Taflove 1988 [225]; Ames 2014 [229]; Morton 2019 [230].

37.1.1 The Finite-Difference Approximation

Consider first a scalar wave equation of the form

1

c2(r)

∂2

∂t2
φ(r, t) = µ(r)∇ · µ−1(r)∇φ(r, t). (37.1.1)

The above equation appears in scalar acoustic waves or a 2D electromagnetic waves in inho-
mogeneous media [34,231].

To convert the above into a form that can be solved by a digital computer, first, one needs
to find finite-difference approximations to the time derivatives. Then, the time derivative can
be approximated in many ways. For example,

Forward difference:
∂φ(r, t)

∂t
≈ φ(r, t+ ∆t)− φ(r, t)

∆t
, (37.1.2)

Backward difference:
∂φ(r, t)

∂t
≈ φ(r, t)− φ(r, t−∆t)

∆t
, (37.1.3)

Central difference:
∂φ(r, t)

∂t
≈
φ(r, t+ ∆t

2 )− φ(r, t− ∆t
2 )

∆t
, (37.1.4)
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Figure 37.1: Different finite-difference approximations for the time derivative.

where ∆t is a small number. Of the three methods of approximating the time derivative, the
central-difference scheme is the best approximation, as is evident in Figure 37.1. The errors
in the forward and backward differences are O(∆t) (or first-order error) while the central-
difference approximation has an error O[(∆t)2] (or second-order error). This can be easily
illustrated by Taylor series expanding the right-hand sides of (37.1.2) to (37.1.4).

Consequently, using the central-difference formula twice, we arrive at

∂2

∂t2
φ(r, t) ≈ ∂

∂t

[
φ(r, t+ ∆t

2 )− φ(r, t− ∆t
2 )

∆t

]
(37.1.5)

≈ φ(r, t+ ∆t)− 2φ(r, t) + φ(r, t−∆t)

(∆t)2
. (37.1.6)

Next, if the function φ(r, t) is indexed on discrete time steps on the t axis, such that for
t = l∆t, then φ(r, t) = φ(r, l∆t) = φl(r), where l is an integer. Using this notation, Equation
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(37.1.6) then becomes

∂2

∂t2
φ(r, t) ≈ φl+1(r)− 2φl(r) + φl−1(r)

(∆t)2
. (37.1.7)

37.1.2 Time Stepping or Time Marching

With this notation and approximations, Equation (37.1.1) becomes a time-stepping (or time-
marching) formula, namely,

φl+1(r) = c2(r)(∆t)2µ(r)∇ · µ−1(r)∇φl(r) + 2φl(r)− φl−1(r). (37.1.8)

Therefore, given the knowledge of φ(r, t) at t = l∆t and t = (l−1)∆t for all r, one can deduce
φ(r, t) at t = (l+1)∆t. In other words, given the initial values of φ(r, t) at, for example, t = 0
and t = ∆t, φ(r, t) can be deduced for all subsequent times, provided that the time-stepping
formula is stable.

At this point, the right-hand side of (37.1.8) involves the space derivatives. There exist
a plethora of ways to approximate and calculate the right-hand side of (37.1.8) numerically.
Here, we shall illustrate the use of the finite-difference method again to calculate the right-
hand side of (37.1.8). Before proceeding further, note that the space derivatives on the
right-hand side in cartesian coordinates are

µ(r)∇ · µ−1(r)∇φ(r) = µ
∂

∂x
µ−1 ∂

∂x
φ+ µ

∂

∂y
µ−1 ∂

∂y
φ+ µ

∂

∂z
µ−1 ∂

∂z
φ. (37.1.9)

Then, one can approximate, using central differencing that

∂

∂z
φ(x, y, z) ≈ 1

∆z

[
φ

(
x, y, z +

∆z

2

)
− φ

(
x, y, z − ∆z

2

)]
, (37.1.10)

Consequently, using central differencing two times,

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ 1

(∆z)2

{
µ−1

(
z +

∆z

2

)
φ(x, y, z + ∆z)

−
[
µ−1

(
z +

∆z

2

)
+ µ−1

(
z − ∆z

2

)]
φ(x, y, z)

+µ−1

(
z − ∆z

2

)
φ(x, y, z −∆z)

}
. (37.1.11)

Furthermore, after denoting φ(x, y, z) = φm,n,p, µ(x, y, z) = µm,n,p, on a discretized grid
point at x = m∆x, y = n∆y, z = p∆z, we have (x, y, z) = (m∆x, n∆y, p∆z), and then

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ 1

(∆z)2

[
µ−1
m,n,p+ 1

2

φm,n,p+1

−
(
µ−1
m,n,p+ 1

2

+ µ−1
m,n,p− 1

2

)
φm,n,p + µ−1

m,n,p− 1
2

φm,n,p−1

]
. (37.1.12)
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This cumbersome equation can be abbreviated if we define a central difference operator
as2

∂̄zφm =
1

∆z

(
φm+ 1

2
− φm− 1

2

)
(37.1.13)

Then the right-hand side of the (37.1.12) can be written succinctly as

∂

∂z
µ−1 ∂

∂z
φ(x, y, z) ≈ ∂̄zµm,n,p∂̄zφm,n,p (37.1.14)

With similar approximations to the other terms in (37.1.9), Equation (37.1.8) becomes

φl+1
m,n,p = (∆t)2c2m,n,pµm,n,p

[
∂̄xµm,n,p∂̄x + ∂̄yµm,n,p∂̄y + ∂̄zµm,n,p∂̄z

]
φm,n,p

+ 2φlm,n,p − φl−1
m,n,p. (37.1.15)

The above can be readily implemented on a computer for time stepping. Notice however,
that the use of central differencing results in the evaluation of medium property µ at half grid
points. This is inconvenient, as the introduction of field values at half grid points increases
computer memory requirements. Hence, it is customary to store the medium property at the
integer grid points, and to approximate

µm+ 1
2 ,n,p

' 1

2
(µm+1,n,p + µm,n,p), (37.1.16)

µm+ 1
2 ,n,p

+ µm− 1
2 ,n,p

' 2µm,n,p, (37.1.17)

and so on. Moreover, if µ is a smooth function of space, it is easy to show that the errors in
the above approximations are of second order by Taylor series expansions.

For a homogeneous medium, with ∆x = ∆y = ∆z = ∆s, (37.1.15) written explicitly
becomes

φl+1
m,n,p =

(
∆t

∆s

)2

c2
[
φlm+1,n,p + φlm−1,n,p + φlm,n+1,p + φlm,n−1,p + φlm,n,p+1

+φlm,n,p−1 − 6φlm,n,p
]

+ 2φlm,n,p − φl−1
m,n,p. (37.1.18)

Notice then that with the central-difference approximation, the value of φl+1
m,n,p is dependent

only on φlm,n,p, and its nearest neighbors, φlm±1,n,p, φ
l
m,n±1,p, φ

l
m,n,p±1, and φl−1

m,n,p, its value
at the previous time step. Moreover, in the finite-difference scheme outlined above, no matrix
inversion is required at each time step. Such a scheme is also known as an explicit scheme.
The use of an explicit scheme is a major advantage of the finite-difference method compared
to the finite-element methods. Consequently, in order to update N grid points using (37.1.15)
or (37.1.18), O(N) multiplications are required for each time step. In comparison, O(N3)
multiplications are required to invert an N × N full matrix, e.g., using Gaussian elimina-
tion. The simplicity and efficiency of these finite-difference algorithms have made them very
popular.

2This is in the spirit of [232].
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37.1.3 Stability Analysis

The implementation of the finite-difference scheme using time-marching does not always lead
to a stable scheme. Hence, in order for the solution to converge, the time-stepping scheme
must at least be stable. Consequently, it is useful to find the condition under which a numer-
ical finite-difference scheme is stable. To do this, one performs the von Neumann stability
analysis (von Neumann 1943 [233]) on Equation (37.1.18). We will assume the medium to be
homogeneous to simplify the analysis.

As shown previously, any wave can be expanded in terms of sum of plane waves in different
directions. This is the spirit of the spectral expansion method. So if a scheme is not stable
for a plane wave, it would not be stable for any wave. Consequently, to perform the stability
analysis, we assume a propagating plane wave as a trial solution

φ(x, y, z, t) = A(t)eikxx+ikyy+ikzz, (37.1.19)

In discretized form, it is just

φlm,n,p = Aleikxm∆s+ikyn∆s+ikzp∆s. (37.1.20)

Using (37.1.20), it is easy to show that for the x space derivative,

φlm+1,n,p − 2φlm,n,p + φlm−1,n,p = 2[cos(kx∆s)− 1]φlm,n,p

= −4 sin2

(
kx∆s

2

)
φlm,n,p. (37.1.21)

The space derivatives in y and z directions can be similarly derived.
The time derivative can be treated and it is proportional to

∂2

∂t2
φ(r, t)(∆t)2 ≈ φl+1

m,n,p − 2φlm,n,p + φl−1
m,n,p. (37.1.22)

Substituting (37.1.20) into the above, we have the second time derivative being proportional
to

∂2

∂t2
φ(r, t)(∆t)2 ≈ (Al+1 − 2Al +Al−1)eikxm∆s+ikyn∆s+ikzp∆s (37.1.23)

To simplify further, one can assume that

Al+1 = gAl. (37.1.24)

This is commensurate with assuming that

A(t) = A0e
−iωt (37.1.25)

where ω can be complex. In other words, our trial solution (37.1.19) is also a time-harmonic
signal. If the finite-difference scheme is unstable for such a signal, it is unstable for all signals.

Consequently, the time derivative is proportional to

∂2

∂t2
φ(r, t)(∆t)2 ≈ (g − 2 + g−1)φlm,n,p (37.1.26)
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We need to find the value of g for which the solution (37.1.20) satisfies (37.1.18). To this end,
one uses (37.1.21) and (37.1.24) in (37.1.18), and repeating (37.1.21), which is for m variable,
for the n and p variables, one obtains

(g − 2 + g−1)φlm,n,p = −4

(
∆t

∆s

)2

c2
[
sin2

(
kx∆s

2

)
+ sin2

(
ky∆s

2

)
+ sin2

(
kz∆s

2

)]
φlm,n,p

= −4r2s2φlm,n,p, (37.1.27)

where

r =

(
∆t

∆s

)
c, s2 = sin2

(
kx∆s

2

)
+ sin2

(
ky∆s

2

)
+ sin2

(
kz∆s

2

)
. (37.1.28)

Equation (37.1.27) implies that, for nonzero φlm,n,p,

g2 − 2g + 4r2s2g + 1 = 0, (37.1.29)

or that

g = (1− 2r2s2)± 2rs
√

(r2s2 − 1) . (37.1.30)

In order for the solution to be stable, it is necessary that |g| ≤ 1. But if

r2s2 < 1, (37.1.31)

the second term in (37.1.30) is pure imaginary, and

|g|2 = (1− 2r2s2)2 + 4r2s2(1− r2s2) = 1, (37.1.32)

when (37.1.31) is true. Therefore, stability is ensured. Since s2 ≤ 3 for all kx, ky, and kz,
from (37.1.31), one concludes that the general condition for stability is

r <
1√
3
, or ∆t <

∆s

c
√

3
. (37.1.33)

The above analysis is for 3 dimensional problems. It is clear from the above analysis that for
an n-dimensional problem where n = 1, 2, 3, then

∆t <
∆s

c
√
n
. (37.1.34)

One may ponder on the meaning of this inequality further: but it is only natural that
the time step ∆t has to be bounded from above. Otherwise, one arrives at the ludicrous
notion that the time step can be arbitrarily large thus violating causality. Moreover, if the
grid points of the finite-difference scheme are regarded as a simple cubic lattice, then the
distance ∆s/

√
n is also the distance between the closest lattice planes through the simple
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cubic lattice. Notice that the time for the wave to travel between these two lattice planes is
∆s/(c

√
n ). Consequently, the stability criterion (37.1.34) implies that the time step ∆t has to

be less than the shortest travel time for the wave between the lattice planes in order to satisfy
causality. In other words, if the wave is time-stepped ahead of the time on the right-hand side
of (37.1.34), instability ensues. The above is also known as the CFL (Courant, Friedrichs,
and Lewy 1928 [234]) stability criterion. It could be easily modified for ∆x 6= ∆y 6= ∆z.

The above analysis implies that we can pick a larger time step if the space steps are
larger. A larger time step will allow one to complete generating a time-domain response
rapidly. However, one cannot arbitrary make the space step large due to grid-dispersion
error, as shall be discussed next.

37.1.4 Grid-Dispersion Error

When a finite-difference scheme is stable, it still may not produce good results because of
the errors in the finite-difference approximations. Hence, it is useful to ascertain the errors
in terms of the size of the grid and the time step. An easy error to analyze is the grid-
dispersion error . In a homogeneous, dispersionless medium, all plane waves propagate
with the same phase velocity. However, in the finite-difference approximation, all plane waves
will not propagate at the same phase velocity due to the grid-dispersion error.

As a consequence, a pulse in the time domain, which is a linear superposition of plane waves
with different frequencies, will be distorted if the dispersion introduced by the finite-difference
scheme is intolerable. Therefore, to make things simpler, we will analyze the grid-dispersion
error in a homogeneous free space medium.

To ascertain the grid-dispersion error, we assume that the solution is time-harmonic, or
that Al = e−iωl∆t in (37.1.20). In this case, the left-hand side of (37.1.27) becomes(

e−iω∆t − 2 + e+iω∆t
)
φlm,n,p = −4 sin2

(
ω∆t

2

)
φlm,n,p. (37.1.35)

Then, from Equation (37.1.27), it follows that

sin

(
ω∆t

2

)
= rs, (37.1.36)

where r and s are given in (37.1.28). Now, Equation (37.1.36) governs the relationship between
ω and kx, ky, and kz in the finite-difference scheme, and hence, is a dispersion relation for
the approximate solution.

But if a medium is homogeneous, it is well known that (37.1.1) has a plane-wave solution
of the type given by (37.1.19) where

ω = c
√
k2
x + k2

y + k2
z = c|k| = ck. (37.1.37)

where k = x̂kx + ŷky + ẑkz is the direction of propagation of the plane wave. Defining the
phase velocity to be ω/k = c, this phase velocity is isotropic, or the same in all directions.
Moreover, it is independent of frequency. But in (37.1.36), because of the definition of s as
given by (37.1.28), the dispersion relation between ω and k is not isotropic. This implies that
plane waves propagating in different directions will have different phase velocities.
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Equation (37.1.36) is the dispersion relation for the approximate solution. It departs from
Equation (37.1.37), the exact dispersion relation, as a consequence of the finite-difference ap-
proximation. This departure gives rise to errors, which are the consequence of grid dispersion.
For example, when c is a constant, (37.1.37) states that the phase velocities of plane waves
of different wavelengths and directions are the same. However, this is not true for (37.1.36),
as shall be shown.

Assuming s small, (37.1.36), after using Taylor series expansion, can be written as

ω∆t

2
= sin−1 rs ∼= rs+

r3s3

6
. (37.1.38)

When ∆s is small, using the small argument approximation for the sine function, one obtains
from (37.1.28)

s ' ∆s

2
(k2
x + k2

y + k2
z)1/2 (37.1.39)

Equation (37.1.38), by taking the higher-order Taylor expansion of (37.1.38), then becomes

ω∆t

2
' r∆s

2
(k2
x + k2

y + k2
z)1/2 [1− δ] (37.1.40)

where (see [34])

δ =
∆s2

24

k4
x + k4

y + k4
z

k2
x + k2

y + k2
z

− r2∆s2

24
(k2
x + k2

y + k2
z) (37.1.41)

Since k is inversely proportional to wavelength λ, then δ in the correction to the above
equation is proportional to ∆s2/λ2. Therefore, to reduce the grid dispersion error, it is
necessary for δ to be small or to have (

∆s

λ

)2

� 1. (37.1.42)

When this is true, using the fact that r = c∆t/∆s, then (37.1.40) becomes

ω

c
≈
√
k2
x + k2

y + k2
z . (37.1.43)

which is close to the dispersion relation of free space. Consequently, in order for the finite-
difference scheme to propagate a certain frequency content accurately, the grid size must be
much less than the wavelength of the corresponding frequency. Furthermore, ∆t must be
chosen so that the CFL stability criterion is met. Hence, the rule of thumb is to choose about
10 to 20 grid points per wavelength. Also, for a plane wave propagating as eik·r, an error
δk in the vector k gives rise to cumulative error eiδk·r. The larger the distance traveled, the
larger the cumulative phase error, and hence the grid size must be smaller in order to arrest
such phase error due to the grid dispersion.
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37.2 The Yee Algorithm

The Yee algorithm (Yee 1966 [224]) is specially designed to solve vector electromagnetic field
problems on a rectilinear grid. The finite-difference time-domain (FDTD) method (Taflov
1988) when applied to solving electromagnetics problems, usually uses this method. To derive
it, Maxwell’s equations are first written in cartesian coordinates:

−∂Bx
∂t

=
∂Ez
∂y
− ∂Ey

∂z
, (37.2.1)

−∂By
∂t

=
∂Ex
∂z
− ∂Ez

∂x
, (37.2.2)

−∂Bz
∂t

=
∂Ey
∂x
− ∂Ex

∂y
, (37.2.3)

∂Dx

∂t
=
∂Hz

∂y
− ∂Hy

∂z
− Jx, (37.2.4)

∂Dy

∂t
=
∂Hx

∂z
− ∂Hz

∂x
− Jy, (37.2.5)

∂Dz

∂t
=
∂Hy

∂x
− ∂Hx

∂y
− Jz. (37.2.6)

Before proceeding any further, it is prudent to rewrite the differential equation form of
Maxwell’s equations in their integral form. The first equation above can be rewritten as

− ∂

∂t

�
∆S

µHxdS =

�
∆C

E · dl (37.2.7)

where ∆S = ∆x∆z. The approximation of this integral form will be applied to the surface
that is closest to the observer in Figure 37.2. Hence, one can see that the curl of E is
proportional to the time-derivative of the magnetic flux through the suface enclosed by ∆C,
which is ∆S. One can see this relationship for the other surfaes of the cube in the figure as
well: the electric field is curling around the magnetic flux. For the second half of the above
equations, one can see that the magnetic fields are curling around the electric flux, but on a
staggered grid. These two staggered grids are intertwined with respect to each other. This is
the spirit with which the Yee algorithm is written.
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Figure 37.2: The assignment of fields on a grid in the Yee algorithm.

After denoting f(m∆x, n∆y, p∆z, l∆t) = f lm,n,p, and replacing derivatives with central
finite-differences in accordance with Figure 37.2, (37.2.1) becomes

1

∆t

[
B
l+ 1

2

x,m,n+ 1
2 ,p+

1
2

−Bl−
1
2

x,m,n+ 1
2 ,p+

1
2

]
=

1

∆z

[
Ely,m,n+ 1

2 ,p+1 − E
l
y,m,n+ 1

2 ,p

]
− 1

∆y

[
Elz,m,n+1,p+ 1

2
− Elz,m,n,p+ 1

2

]
. (37.2.8)

Moreover, the above can be repeated for (37.2.2) and (37.2.3). Notice that in Figure 37.2,
the electric field is always assigned to the edge center of a cube, whereas the magnetic field
is always assigned to the face center of a cube.

In fact, after multiplying (37.2.8) by ∆z∆y, (37.2.8) is also the approximation of the
integral forms of Maxwell’s equations when applied at a face of a cube. By doing so, the
left-hand side of (37.2.8) becomes

(∆y∆z/∆t)
[
B
l+ 1

2

x,m,n+ 1
2 ,p+

1
2

−Bl−
1
2

x,m,n+ 1
2 ,p+

1
2

]
, (37.2.9)

which is the time variation of the total flux through an elemental area ∆y∆z. Moreover, by
summing this flux on the six faces of the cube shown in Figure 37.2, and using the right-
hand side of (37.2.8) and its equivalent, it can be shown that the magnetic flux adds up to
zero. Hence, ∂

∂t∇ · B = 0 condition is satisfied within the numerical approximations of Yee
algorithm.

Furthermore, a similar approximation of (37.2.4) leads to

1

∆t

[
Dl
x,m+ 1

2 ,n,p
−Dl−1

x,m+ 1
2 ,n,p

]
=

1

∆y

[
H
l− 1

2

z,m+ 1
2 ,n+ 1

2 ,p
−H l− 1

2

z,m+ 1
2 ,n−

1
2 ,p

]
− 1

∆z

[
H
l− 1

2

y,m+ 1
2 ,n,p+

1
2

−H l− 1
2

y,m+ 1
2 ,n,p−

1
2

]
− J l−

1
2

x,m+ 1
2 ,n,p

. (37.2.10)

Also, similar approximations apply for (37.2.5) and (37.2.6). In addition, the above has an
interpretation similar to (37.2.8) if one thinks in terms of a cube that is shifted by half a grid
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point in each direction. Hence, the approximations of (37.2.4) to (37.2.6) are consistent with
the approximation of ∂

∂t∇ ·D = −∇ · J. This way of alternatively solving for the B and D
fields in tandem while the fields are placed on a staggered grid is also called the leap-frog
scheme.

In the above, D = εE and B = µH. Since the magnetic field and the electric field are
assigned on staggered grids, µ and ε may have to be assigned on staggered grids. This does
not usually lead to serious problems if the grid size is small. Alternatively, (37.1.16) and
(37.1.17) can be used to remove this problem.

By eliminating the E or the H field from the Yee algorithm, it can be shown that the Yee
algorithm is equivalent to finite differencing the vector wave equation directly. Hence, the
Yee algorithm is also constrained by the CFL stability criterion.

The following figures show some results of FDTD simulations. Because the answers are
in the time-domain, beautiful animations of the fields are also available online:

https://www.remcom.com/xfdtd-3d-em-simulation-software

Figure 37.3: The 2D FDTD simulation of complicated optical waveguides (courtesy of Math-
works).
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Figure 37.4: FDTD simulation of human head in a squirrel cage of an MRI (magnetic reso-
nance imaging) system (courtesy of REMCOM).

37.2.1 Finite-Difference Frequency Domain Method

Unlike electrical engineering, in many fields, nonlinear problems are prevalent. But when
we have a linear time-invariant problem, it is simpler to solve the problem in the frequency
domain. This is analogous to perform a time Fourier transform of the pertinent linear equa-
tions.

Consequently, one can write (37.2.1) to (37.2.6) in the frequency domain to remove the
time derivatives. Then one can apply the finite difference approximation to the space deriva-
tives using the Yee grid. As a result, one arrives at a matrix equation

A · x = b (37.2.11)

where x is an unknown vector containing E and H fields, and b is a source vector that
drives the system containing J. Due to the near-neighbor interactions of the fields on the Yee
grid, the matrix A is highly sparse and contains O(N) non-zero elements. When an iterative
method is used to solve the above equation, the major cost is in performing a matrix-vector
product A · x. However, in practice, the matrix A is never generated nor stored making this
a matrix-free method. Because of the simplicity of the Yee algorithm, a code can be written
to produce the action of A on x.

37.3 Absorbing Boundary Conditions

It will not be complete to close this lecture without mentioning absorbing boundary condi-
tions. As computer has finite memory, space of infinitely large extent cannot be simulated
with finite computer memory. Hence, it is important to design absorbing boundary conditions
at the walls of the simulation domain or box, so that waves impinging on it are not reflected.
This mimicks the physics of an infinitely large box.
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This is analogous to experments in microwave engineering. In order to perform experi-
ments in an infinite space, such experiments are usually done in an anechoic (non-echoing or
non-reflecting) chamber. An anechoic chamber has its walls padded with absorbing materials
or microwave absorbers so as to minimize the reflections off its walls (see Figure 37.5). Figure
37.6 shows an acoustic version of anechoic chamber.

Figure 37.5: An anechoic chamber for radio frequency. In such an electromagnetically quiet
chamber, interference from other RF equipment is minimized (courtesy of Panasonic).

Figure 37.6: An acoustic anechoic chamber. In such a chamber, even the breast-feeding sound
of a baby can be heard clearly (courtesy of AGH University, Poland).

By the same token, in order to simulate an infinite box with a finite-size box, absorbing
boundary conditions (ABCs) are designed at its walls. The simplest of such ABCs is the
impedance boundary condition. (A transmission line terminated with an impedance reflects
less than one terminated with an open or a short circuit.) Another simple ABC is to mimick
the Sommerfeld radiation condition (much of this is reviewed in [34].

A recently invented ABC is the perfectly matched layers (PML) [235]. Also, another
similar ABC is the stretched coordinates PML [236]. Figure 37.7 shows simulation results
with and without stretched coordinates PMLs on the walls of the simulation domain [237].
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Figure 37.7: Simulation of a source on top of a half-space (left) without stretched coordinates
PML; and (right) with stretched coordinats PML [237].
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